1. Use synthetic division to find which point is on the graph:
$f(x)=x^{3}+x^{2}-20 x$
A. $(-1,20)$
B. $(-1,10)$
C. $(-1,13)$
D. $(-1,19)$
2.

What values of x, when substituted in the expression $x^{3}-11 x^{2}+23 x+35$, result in an output of zero?
(A) $7,5,1$
(B) $35,7,-1$
(C) $7,5,-1$
(D) $5,-1,-7$
3. Use synthetic Division to complete the table, then graph:
$f(x)=x^{4}-40 x^{2}+144$

x	y
1	
0	
2	

4. If it is given that there is a zero on the graph at -2 . Use synthetic division to find the quadratic to factor, and then list all the zeros from low to high. Sketch a quick graph with the correct x and y-intercepts and shape.
$f(x)=x^{3}-2 x^{2}-5 x+6$

5. Divide: $\frac{x^{4}-4 x^{2}-3 x}{x+3}$	6. Divide. $\frac{x^{3}+8 x+7}{x+1}, x \neq-1$ (A) $x^{2}-x+9-\frac{2}{x+1}$ (B) $x^{2}-x+9-\frac{2}{x^{3}+8 x+7}$ (c) $x^{2}+x+9+\frac{16}{x+1}$ (D) $x^{2}+x+9+\frac{16}{x^{3}+8 x+7}$
7.	
(A) 30	
(B) -3	
(c) $x+3$ (D) $x-3$	
8. Graph the following by using the remainder theorem to complete the table and graph the points. $f(x)=x^{3}+5 x^{2}+2 x-8$	9. Graph the points at left. \qquad
x y 	10
-4	
-3	
-2	
1	
2	

16. If it is given that there is a zero on the graph at 4. Use synthetic division to find the quadratic to factor, and then list all the zeros from low to high. Sketch a quick graph with the correct x and y -intercepts and shape. $f(x)=-x^{3}+11 x^{2}-38 x+40$

18. If it is given that there is a zero on the graph at 2. Use synthetic division to find the quadratic to factor, and then list all the zeros from low to high. Sketch a quick graph with the correct x and y -intercepts and shape.
$f(x)=-x^{3}-1 x^{2}+6 x$
17. If it is given that there is a zero on the graph at -2 . Use synthetic division to find the quadratic to factor, and then list all the zeros from low to high. Sketch a quick graph with the correct x and y -intercepts and shape.
$f(x)=x^{3}+9 x^{2}+26 x+24$

19. Factor and then graph: $P(x)=x^{4}-27 x^{2}+50$
List x -Intercepts and y -Intercept

26. Find $f^{-1}(x)$
$f(x)=\frac{2 x-1}{3-x}$

20. Factor and then graph: $P(x)=x^{4}-12 x^{3}+35 x^{2}$ List x -Intercepts and y -Intercept	21. Factor and then graph: $P(x)=x^{4}-x^{3}-1 x+1$ List x -Intercepts and y -Intercept
22. Graph. $P(x)=-(x-4)^{3}(x+2)^{2}(x-1)$ List x -Intercepts and y -Intercept	23. Determine if the function given is a one-to-one function. (Valid reasoning must be provided to receive credit.) $f(x)=2\|x-3\|+5$
24. Sketch the graph of the following. Write Vertex, Vertex (Standard)Form, X-Intercepts, \& y -Intercepts. $f(x)=3 x^{2}+7 x+2$	25. If $f(x)=2 x-3$, and $g(x)=\frac{2}{5-x}$ $g \circ f$ Domain of $g \circ f$

